

Teeth Roger Shore

Permanent human dentition - 32 teeth

Periodontium

4 Connective tissues:

2 calcified2 non-calcified

Non calcified

1. lamina propria
2. periodontal _____
ligament

Calcified

cementum — 2. alveolar bone _ (lamina dura)

Periodontium

4 Connective tissues:

2 calcified2 non-calcified

Non calcified

1. lamina propria
2. periodontal
ligament

Calcified

cementum
alveolar bone
(lamina dura)

Common element

fibrous collagen is the bulk protein

ENAMEL 1

PHYSICAL PROPERTIES:

Very hard and brittle – relies on DENTINE for resilience

Colour dictated by its translucency and colour of underlying dentine

CHEMICAL COMPOSITION:

96-99% mineral by weight (hydroxyapatite) (c.f. 60% forbone)3% water

1% organic (mainly protein but not collagen)

Amelogenesis *imperfecta*

- a. Local hypoplastic
- b. Pitted hypoplastic
- c. Rough hypoplastic
- d. Hypomature
- e. Hypocalcified

ENAMEL 2

BASIC STRUCTURE:

Hydroxyapatite crystal 60-90nm x 25-30nm x ?

(c.f. bone crystals 40nm x 5-10nm x 50nm)

 $Ca_{10}(PO4)_6OH_2$

Crystals arranged into PRISMS (RODS) (approx

5µm diameter)

Prisms perpendicular to ADJ

S3400 20.0kV 5.7mm x2.10k SE

DENTINE

PHYSICAL PROPERTIES:

Slightly harder than bone

Elastic, not brittle

Yellow in colour

CHEMICAL COMPOSITION:

65% mineral (by wt), 35% organic and water

Organic mainly COLLAGEN but also proteoglycans and glycoproteins

DENTINE 2

BASIC STRUCTURE:

Hydroxyapatite crystal

Crystals arranged mainly parallel to collagen (meshwork)

Dentinal tubules containing ODONTOBLAST process

Tubule extends from pulp to ADJ (odont. process also?)

Tubules not straight, they have -

primary curvature (resembles 'S' shape)

secondary curvatures (small, relatively regular wave-like deviations superimposed on primary c.)

Tubules branched (mainly at ADJ)

3. PERITUBULAR (hypermineralised) and INTERTUBULAR

4. IRREGULAR SECONDARY (TERTIARY or REPARATIVE) (REACTIONARY or REPARATIVE)

Predentine

Odontoblasts

Cell-free zone

Cell-rich zone

Nerve plexus of Raschkow

PROPOSED MECHANISMS OF DENTINE SENSITIVITY

- 1. Direct innervation
- 2. Odontoblasts act as sensory endings
- 3. Hydrodynamics (fluid flow)

The End